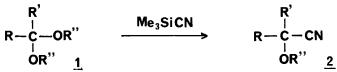
Tetrahedron Letters, Vol.22, No.43, pp 4279 - 4280, 1981 Printed in Great Britain


2-ALKOXY AND 2,2-DIALKOXY NITRILES FROM ACETALS AND ORTHOESTERS - EXCHANGE OF ALKOXY INTO CYANO GROUP BY MEANS OF CYANOTRIMETHYLSILANE

> Kiitiro Utimoto*, Yukio Wakabayashi, Yuho Shishiyama, Masaharu Inoue, and Hitosi Nozaki

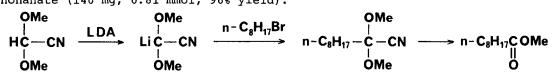
Department of Industrial Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan

Summary: Title transformation is accomplished by the catalytic action of $SnCl_2$ or $BF_3 \cdot OEt_2$. Lithio derivative of 2,2-dimethoxyacetonitrile is used as synthetic equivalent of methyl lithioformate.

Organosilicon compounds have found important roles in organic synthesis.^{1,2} In this context cyanotrimethylsilane has been used as a versatile cyanation agent.^{3,4} This paper describes a novel synthetic utility of Me_3SiCN , whose reaction with acetals and orthoesters under the catalytic action of $SnCl_2$ or $BF_3 \cdot OEt_2$ gives 2-alkoxy or 2,2-dialkoxyalkanenitriles, respectively, in excellent yield.⁵

Entry	R	R'	R"	Catalyst	Yield (%) ^a
1	Н	Н	Me	SnCl ₂	64
2	Me	н	Me	BF3.OEt2	73
3	Me	н	Et	BF3.OEt2	97
4	n-C6 ^H 13	Н	Me	SnC1,	83
5	PhCH ₂	н	Me	BF3.OEt2	88
6	Ph	н	Me	SnCl,	94
7	C1CH,	Н	Me	SnCl	80 ^b
8	н ₂ с=сн	Н	Me	SnCl ₂	72
9	n-C ₆ H ₁₃ C≡C	Н	Me	BF3.OEt2	94
10	H	OMe	Me	BF3.OEt2	· 80
11	Н	OEt	Et	BF3.OEt2	84
12	Ме	OMe	Ме	BF3.OEt2	70
13	OMe	OMe	Me	SnCl ₂	83 ^b

Table 1. 2-Alkoxy and 2,2-Dialkoxy Nitriles 2


a) Isolated yields are shown. Glc yields are quantitative. b) Reaction catalyzed by BF₃.OEt₂ gives unsatisfactory result.

4279

Preparation of dimethoxyacetonitrile from trimethyl orthoformate is illustrative (entry 10, Table 1). A mixture of trimethyl orthoformate (3.3 ml, 30 mmol) and cyanotrimethylsilane (3.8 ml, 30 mmol) was added with 0.3 ml (2 mmol) of $BF_3 \cdot OEt_2$ at room temperature. After stirring for 3 h, the completion of the reaction was observed by nmr and glc. The reaction mixture was worked up with NaHCO₃ aq. solution and extracted with ether. Drying (Na₂SO₄) and distillation gave dimethoxyacetonitrile (2.4 g, 24 mmol, 80% yield). In place of $BF_3 \cdot OEt_2$, $SnCl_2$ could be used as catalyst affording similar results with exception of entries 7 and 13 in Table 1 where $BF_3 \cdot OEt_2$ gave unsatisfactory results.

The known synthetic utility of 2-alkoxyalkanenitrile⁹ can be extended to 2,2-dimethoxyacetonitrile which serves as a "methyl lithioformate" equivalent.

A THF solution of LDA was prepared from diisopropylamine (597 mg, 5.9 mmol), n-BuLi (5.9 mmol, 4.1 ml of 1.44 M hexane solution) and 20 ml of THF. A solution of dimethoxyacetonitrile (546 mg, 5.4 mmol) in THF-HMPT (4:1, 5 ml) was added to LDA solution maintained at -78° C. The whole was stirred for 90 min at -78° C, then 1-bromooctane (1.1 ml, 6.0 mmol) was added at the same temperature. After stirring for 90 min at -78° C then 30 min at room temperature, the reaction mixture was added with ether and worked up with ice-water. Organic layer was dried (Na₂SO₄) and concentrated. Chromatography (silica gel, hexane-benzene) gave 2,2-dimethoxydecanenitrile (630 mg, 3.0 mmol, 55% yield). A solution of the product (180 mg, 0.85 mmol) and p-toluenesulphonic acid (10 mg) in acetonewater (5:1, 12 ml) was heated at reflux for 3 h. Usual workup afforded methyl nonanate (140 mg, 0.81 mmol, 96% yield).

REFERENCES AND NOTES

- I. Fleming in "Comprehensive Organic Chemistry", Derek Barton and W. D. Ollis, Ed., Pergamon Press, Oxford, 1979; Vol. 3, pp 541-686.
- S. Pawlenko in "Methoden der Organischen Chemie (Houben-Weyl)", 4th Ed.,
 E. Müller and O. Bayer, Ed., Georg Thieme, Stuttgart, 1980; Vol. XIII,
 part 5, pp 339-391.
- 3. (a) Ref. 1, p 653. (b) Ref. 2, p 364.
- K. Utimoto, M. Obayashi, Y. Shishiyama, M. Inoue, and H. Nozaki, Tetrahedron Letters, <u>21</u>, 3389 (1980).
- Preparations of 2-alkoxyalkanenitriles (ref. 6) and 2,2-dialkoxyalkanenitriles (ref. 7,8) have been reported but reported yields are not high.
- 6. W. P. Wallace and H. R. Henze, J. Am. Chem. Soc., 64, 2882 (1942).
- 7. J. G. Erickson, J. Am. Chem. Soc., 73, 1338 (1951).
- 8. H. Böhme and R. Neidlein, Chem. Ber., <u>95</u>, 1859 (1962).
- 9. G. Stork and L. Maldonado, J. Am. Chem. Soc., <u>93</u>, 5286 (1971).

(Received in Japan 10 July 1981)

4280